CALCULATION OF TRANSIENT COMBUSTION REGIMES
FOR SOLID PROPELLANT IN A CHANNEL

V. B, Librovich and G, M, Makhviladze

In the study of solid-propellant transient-burning processes the case of solids containing an oxidizer
in their composition was examined in [1-8]. The theory of unsteady combustion processes of such
propellants was given in [1-3]., A numerical calculation was made in [4] of the transient processes from
the steady-state burning regime at one pressure to the steady-state regime at a different pressure, using
an electronic computer, In [5] the method of integral relations was used to derive analytic expressions
for the unsteady solid burning rate for instantaneous and exponential variation of the pressure, The effect
on solid propellant burning velocity of harmonically varying pressure was studied in {6]. The unsteady
processes in the burning of solid propellants were investigated in [7].

In the following we examine the transient regimes for diffusive combustion, which occurs when the
oxidizer is supplied from outside and does not form part of the solid propellant, The transition from one
burning regime to another is specified by variation of the oxidizer flowrate, Combustion models for
such systems were proposed in [9, 10], In calculating the transient regimes we use the combustion model
based on the limiting role of mass transfer in diffusive combustion [10], In view of the finite time for
emptying of the propellant channel through the nozzle (with reduction of the oxidizer flowrate) or filling
of the channel (with increase of the oxidizer flowrate), the pressure in the channel will lag behind the
change in oxidizer flowrate. Moreover, the transient regimes are characterized by formation in the
channel of gasdynamic waves which cause pressure pulsations as they are reflected alternately from the
head and nozzle ends of the channel. The solid propellant combustion velocity depends on the mass velocity
of the gas stream; therefore channel burnup takes place nonuniformly. A system of equations describing
the steady-state and transient combustion regimes and a finite-difference scheme for the integration of
this system are proposed. The behavior pattern of the solutions obtained are discussed,

PROBLEM FORMULATION

Let the fuel have the form of a cylindrical grain with axial channel of radius R, through which the
oxidizer stream flows., We direct the x axis along the axis of symmetry; x = 0 coincides with the beginning
of the channel. The channel length is /. The channel is throttled by a supersonic nozzle, We shall solve
the problem under the following assumptions.,

1°, The flow is one-dimensional and turbulent along the entire channel length., We neglect the non-
uniformity of the flow in the transverse y and z directions, which can occur as a result of expansion or
curvature of the channel walls, efflux from the walls of the combustion products, as a result of friction or
heat transfer. The naturalness of this assumption is confirmed by the fact that the gas motion in the
channel is turbulent and the turbulence is intensified by heat and mass addition as a result of the chemiecal
combustion reaction taking place at the walls (see 2°). We note that the one-dimensional model presumes
complete mixing of the oxidizer and combustion products at each section of the channel.

2°, In the channel diffusive combustion takes place at the walls (this model was discussed in [10]),
i.e., above the surface of the fuel there develops a diffusion flame of chemical reaction of the solid fuel
gasification products with the gaseous oxidizer flowing past the fuel surface, and this flame is located in
the boundary layer. We note that the distance from the flame to the fuel surface is inversely proportional
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to the burning velocity [10]. Therefore the assumption made here is valid as long as the oxidizer concen-
tration in the flow is not too small, In fact, as the oxidizer concentration diminishes (i.e., with increase

of x) the diffusion flame moves away from the surface of the solid fuel; therefore the fuel flame is in-
creasingly subject to the action of the outer turbulent flow. As a result the flame is deformed and becomes
ragged, discontinuities may appear on the flame surface; then a qualitatively different mechanism for
breakdown of the solid fuel begins to play a role — namely, ablation. Therefore we shall assume that the
channel is not too long and the Reynolds numbers, which determine the burning velocity, are not very large.
Since the flame is located in the depth of the boundary layer we shall assume that the chemical reaction

is concentrated at the channel] walls.

3° The gas is assumed to be ideal and of constant molecular weight.

4°, We also neglect the change of the channel shape and dimensions in the course of the transient
process.

5° We neglect the dependence of the thermal effect on the gas flow parameters, i.e., we assume
that the heated fuel layer adjusts instantaneously to the state of the gas flow.

6°. The gas motion is turbulent, therefore it is natural to neglect the molecular transport phenomena
as well.

Equations and Boundary Conditions., Before writing out the system of equations we note that the
solid fuel burning velocity can be written in the form

m = Bpaj" 2.1)

Here m is the mass burning velocity of the solid fuel, a is the relative weight concentration of the
oxidizer, By, and n are constants, and j is the mass velocity of the gas flow,

Expression (2,1) for the burning velocity can be obtained by using the condition for the stoichiometric
relation between the fuel and oxidizer flows in the diffusion flame and calculating the mass transfer
coefficient from the criterial connection between the diffusive Nusselt number, the Reynolds and Prandtl
numbers, and the ratio of the gas efflux velocity from the fuel to the longitudinal velocity of the oxidizer
stream [10].

We shall use as the governing equations the one-dimensional gasdynamic equations with account for
the heat and mass sources concentrated at the walls, In view of the fact that in calculating the transient
regimes the magnitude of the gas flowrate, the gas concentration, and also the enthalpy will be specified
at the entrance to the channel, it is convenient to write the system of equations interms of the dependent
variables j, p (gas pressure), a, H (gas enthalpy), using the expression (2.1) for m.

We introduce dimensionless variables (denoted by primes)
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The subscript 0 denotes the value of the given quantity at the section x = 0, Q is the effective burning
thermal effect per unit weight of the solid fuel, t is time.

In these variables (we drop the primes hereafter) the system of equations has the form

dw of (2.3)
RN e
Here w,f, s are single-column matrices with the components
P . Tpe i = p i v—1 p°H
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Here v 1is the adiabatic exponent of the gas, vy = (v3 + 1) is the stoichiometric coefficient.
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To solve this system we pose the three boundary conditions at the channel entrance
=0, j=h(@), e=1, H=1 (2.5)

The function h{t) specifies the transition from one burning regime to another. Assume that a
constant oxidizer flowrate equal to a;j,mR? was maintained at the channel entrance for t < 0. As a result
the steady- state burning regime corresponding to this oxidizer flowrate was established, The correspond-
ing steady-state solution, found below, will serve as the initial condition for the solution of the unsteady
system of equations (2.3). Then, beginning at the time t = 0 there is a sharp change of the oxidizer flow-
rate by several fold, specified by the function h{t), which causes transition to another steady-state burning
regime corresponding to the new oxidizer flowrate.

The fourth boundary condition accounts for the presence of the Laval nozzle, If we assume that the
gas flow through the nozzle is quasisteady, adjusting to the state of the gas at the entrance to the nozzle,
we can use the known expression

R? — Ap,R? =V =2V Rop)-, g — LY (2.6
i PR <A V7\7+1> EI)™, a==7) )

Here A is the coefficient of gas discharge through the nozzle, R’ is the gas constant, T is the temper-
ature in the gas stream, Rx is the radius of the nozzle throat, the subscript ! indicates the value of the
given quantity at the section x = [. Separating the temperature dependence in (2.6) and converting to
dimensionless variables, we have

1. 11 . 1 2 o / R, \2
=t e (= () () .0

Solution of the Steady-State Problem of Burning in a Fuel Channel. Let us find the steady-state
solution of (2,3) with the boundary conditions (2.5), (2.7). (In this case h{t) =1.) Dropping the derivatives
with respect to t in (2,3) and combining the last three equations with the first, we obtain the dependence of
ps H, a on j, pg and the boundary conditions for x = 0

_f_m - =
a=—[1— 2 G-1], H- w=np G—p) (B*%“L:Tm )
1

Q0 . . . (3.1)
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Substituting the expression for a into the first steady-state equation (2.3), we obtain the differential
equation describing the variation of the gas stream along the channel axis

dq m vy [ — 1)

7 —wkr (1) (3.2)
For arbitrary values this expression can only be integrated numerically,* however we can obtain

analytic expressions for n = 0.5 and n = 1.0 which majorize from below and from above the real relation

j = jx) for 0.5 <n < 1, We present these relations

j=1 4 220 exp(—~ 2 Kz (n=1)
[t — expl— 3 &s)]

Ve (353)
. T T A+ Ve
2 __ _ — —~ TN T} — —
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. vido \Ye
d:<1+—;2 ) (3.4)

*The Euler method was used for the numerical computation. The interval of values from 0 to 1 was divided
into 100 parts, so that x; = iAx, where Ax = 0,01,i=0, 1, 2, . .., 100, The finite-difference equation
corresponding to the differential equation (3.2) has the form

7 Aoy = o)+ A (v 2o K1 (e = A 2% K [ (g

This equation makes it possible to calculate the flux j for all x. The results of the calculations are shown
in Fig, 1. Curve 3 was obtained by numerical calculation for n = 0,76; curves 6 and 7 were plotted for n =
1 and n = 0.5 (remaining parameters are the same), We see from the figure that the steady-state solution
can be obtained from the analytic expressions (3,3), (3.4) with good accuracy.
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We can determine the quantity j; from (3.2), Writing the second
and third equations (3.1) for x = I and using the boundary condition 2.7),

¥ 17
12 ’—i J - /,45 we obtain a system of equations from which we find the dependence of
i ~Z=77| ' |  the chamnel entrance pressure py on j;

ar 1

= ; 1
1t 2z ﬂ ‘—' P = T;1 [G—e+(c2—-2css+ T?i a>/z]

s=1+ 2 (,—1 S Pt WY LN Sl IR 1—1 5\ (3.5)
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Fig. 1 Now all the other functions are found easily from (3.1).

In the calculation we used various values of the dimensionless
parameters appearing in the equations and the boundary conditions,

1°, We set v= 1,276, = 0.3182, Q = 33,33, @y = 0,22, n = 0,76, vy = 4,43, With these values the
calculation was made for K4 = 0.0906, K, = 0,0822, K3 = 0,1070,

The parameter Ky corresponds to twice the oxidizer flowrate at the channel entrance as for the
parameter K; and the parameter Ky corresponds to a flowrate 1.5 times that of Ky (other parameters
remaining the same).

The resulting steady-state solutions are shown in Fig. 1 and are denoted by 1, 2, 3 in accordance
with the number K. The point x = 1.0 on the absecissa axis corresponds to the end of the channel,

We note that the flow at the end of the channel increases by 21.3% for case 1. The amount of
oxidizer carried away together with the gas stream through the nozzle amounts to 20,7% of the amount of
oxidizer entering the channel. From the third equation (2.3) we have

pr =po (1 -+ M) [ (L + vM?) (3.6)

where M is the Mach number. Since the motion in the channel is essentially subsonic (Mg = 0.08, My = 0,13
for case 1), the pressure decreases only slightly along the channel axis: pgy = 5.66 and decreases by 1.5%
toward the end of the channel,

In this case the gas enthalpy increases by 114% at the channel exit section. Thus the relative mass
flow increase is considerably less than the relative gas enthalpy increase.

In conclusion, we present the values of the time for gas passage through the channel (or the time for
emptying the fuel channel) t; = 12.5 and the time for the propagation of a sound disturbance t, = 1.4 {these
characteristic times are approximately the same for all three cases).

2°, We set v=1.283,%n = 0.5141, Q = 36,50, 2, = 0,21, n = 0,76, vy = 4,43, With these parameters the
calculation was made for K, = 0,1447 and K5 = 0,0935,

The parameter X5 corresponds to 6,17 times more oxidizer flowrate through the channel than for K,
(other parameters remaining the same).

The solutions for these two cases are shown in Fig, 1 and denoted by numerals 4 and 5 in accordance
with the number K, The behavior of the solutions is the same as in case 1°, In this case t; = 7.1, t; = 1.2,

Integration of the Unsteady Equations. The unsteady problem was solved numerically using the two-
layer explicit difference scheme of second-order accuracy proposed in [11]. The artificial viscosity
(required for automatic calculation of the shocks) appears implicitly in (4.1) as a result of approximation
of the differential equations by finite-difference equations. All the quantities are taken at the grid nodes
Xj =idx,i=0,..., 100; t = mAt, m = 0.1..., We write out this scheme

' A Wy @) +w, ()
Wi, (t + _2£) =_i+_1%_"’_i_ - 2—2’:? Fra®—7; O+ AZ‘_ 8101/ ,(8)

, 4,1
w; (4 M) = w(t) —(AYAZ) [f1,0y, @ 2o At) — f; o (E 4+ Yo AB)] + Ats, (2 41 A2) “.1)

All the quantities are first calculated on the half-integral layer at the time t + Y o At from the first-
order accuracy scheme (first equation (4.1) and then at the time t + At using the quantities on the half-
integral layer, so that as a result the scheme (4.1) has second-order accuracy.
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To improve the computational efficiency, in place of the

P 40 —+— sharp change (step) in the oxidizer flowrate we used a smooth
@ ” & (exponential) transition to the new flowrate, i.e.,
175 B(t) =k -+ (1~ k) &hmat 4.2)
\_,.-_/\_Zﬁ_ 17 Here k is the final gas flowrate at the channel entrance
7 _~—1Z ] (initial value was 1) in the transient regime; A was selected so
‘j\\ that the new oxidizer flowrate was established quite rapidly. The
1\ T T T N s s
E——— calculations were made for three cases, The transients were
[ . s
\/ f/\ > investigated for k = 6,17, 0.5, 1.5,
73
ESEEQ\ j In order for the selected difference scheme to be stable G.e.,
O s V2 i s ¥ :
\ in order that small errors which arise in the computational
75 ‘ ‘ process not grow), the relationship between the time and coordinate
J 0.25 75 [ 475 1 18 steps must satisfy the Courant— Friedrichs — Levy stahility
T ‘= . 16 criterion, namely
] ~ > J A
® ,//ﬂi’ﬂ; maz (] + ¢) At/Az <1
//%2// b The step in x was selected as in the steady case (Ax = 0,01 in
A" A // dimensionless form), the gas velocity u and the sound speed c
/A were estimated from the steady temperature profile, after which
the quantity At was calculated. Points on the boundary were
1 | refined using a five point scheme. The computation was terminated
4 o2 £.3 07 X 10 yhen the distributions of all the quantities became close to their
Fig, 2 final steady state distributions,

DISCUSSION OF RESULTS

1°, Let us first examine how the transient takes place for k = 6,17, i.e., from the steady regime
corresponding to Ky = 0,1447 to the new steady regime corresponding to K5 = 0.0935 (the other numerical
parameters are the same as in 2° of Section 3),

In Fig. 2a and b the abscissa is the distance from the channel entrance to the beginning of the nozzle,
and the point x = 1,0 corresponds to the end of the channel. The ordinate is the dimensionless pressure
(Fig, 2a) and temperature (Fig. 2b). The coordinate step Ax = 0,01; the time step At = 0,0075, The solutions
are shown at different moments of time, The time scale AT = 0,3075, i.e., the curve denoted by the
numeral 3 is the sclution at the moment 3AT (some intermediate curves are not shown to avoid confusion
in the figure).

The upper curve in Fig, 2a is the final steady pressure profile (K = K;), the lower curve is the
initial steady pressure profile (K =K,). The time for establishing the new oxidizer flowrate at the channel
entrance is AT,

We see from the figure that after change of the oxidizer flowrate a shock wave begins to propagate
through the channel (in all the figures the direction of propagation of the shock wave is indicated by the
arrow), which after reaching the nozzle is reflected from the nozzle and begins to propagate in the opposite
direction; then it is reflected from the left boundary and so on. The initial wave intensity is Ap /p; = 0.4,
(ratio of the pressure differential across the wave front to the pressure in the undisturbed region), There
is a dip in curve 2. This indicates the appearance of a rarefaction wave, which develops as a result of
decay of the developing discontinuity.

Figure 2b (see curves 2,3) shows that heating of the gas by the shock wave is quite significant. Let
us make an estimate of the gas temperature rise in the wave front at the moment 3AT, Knowing Ap/py,
we find from the Rankine — Hugoniot relations that the ratio of the gas temperature behind the shock wave
to the temperature in the undisturbed region is 1.08. This agrees with the ratio of these temperatures
calculated for curve 3 from Fig, 2b, We note that the gas temperature at the exit from the channel in the
initial steady state is higher than the gas temperature in the final steady state by a factor of 1.07 (the
curves labeled a and b are the initial and final steady-state distributions); however, as a result of heating
of the gas by the shock wave its temperature may be higher than the initial value. Upon reflection of the
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wave from the nozzle (Fig. 2a, curve 6) a high-temperature gas

12 ; ; = = slug is formed (Fig. 2b, curve 6). Then this slug begins to slowly
dissipate, since the gas discharges through the nozzle. The tem-

g T ? \‘1\‘ perature gradually decreases to the steady~state value correspond-

] ing to K = K; (Fig, 2b, curve 54),

77— 17

i The shock wave propagates toward the left boundary with
g7l 21 \H R e === a velocity approximately half (relative to the channel walls) that
B 74 of the wave propagating toward the nozzle. This is explained by
77 the fact that the wave is traveling in the direction opposite the

3y 24 direction of the gas flow. The shock wave velocity relative to the
70 walls is twice that of sound (estimated using curves 2 and 3 in

Fig, 2a),

90

2.6 ‘ T The reflection of the shock wave from the boundaries takes
: : place like reflection from solid walls. This is explained by the
) ‘ (b) fact that the gas velocity in the channel is low; therefore during

| N the time of wave reflection from the boundary only a very small
part of the wave can pass into the nozzle.

=
=
™~
<&
=
[
X

P~
! \\\
0y NG ?\\\ During shock wave reflection from the nozzle a small second
\\‘7‘\\& hump forms on its profile, which is apparently associated with the

formation of a rarefaction wave during reflection from the nozzle.

- ; _ The shock wave decay, which is seen in Fig. 2a, takes place
primarily in the volume. Decay of the wave is accompanied by
diffusion of its front, Reduction of the wave intensity takes place
because:

a) part of the gas does manage to pass into the nozzle during
(1 I A A PR '”tj the reflection time;

2

b) there is interaction of the compression wave with the
__L_ ______ A _I] rarefaction waves;

4.5¢7.5 - =120 ]
Y I ¢) the wave propagates through a nonhomogeneous medium

(specifically, after reflecting from the nozzle the wave travels
through gas whose pressure increases with decrease of x).

3.5} 6.5 ﬂ S 10 We see from Fig, 2a that the wave decay in this case is very
~_ 2 marked during its interaction with the gas entering the channel
(curves 6 and 9), i.e., for the third reason, The times for wave
1""‘_“”_—“_““‘*ﬁ decay (here we have in mind the time for marked reduction of the
2.5k 55 tly wave intensity) and for transition to the new steady-state regime
7 44 g0 199 will be presented below.
Fig, 4

After decay of the shock wave there is a smooth pressure
rise up to the final steady-state distribution because of propagation
through the channel of compression waves of low intensity (therefore they are not noticeable in the figure).
In addition to the gradually decaying wave which develops at the initial moment, these waves are generated
at the point where the gas entering the channel at the moment t = 0 compresses the gas being displaced.

2° TFigure 3a shows the pressure distribution along x at different moments of time for k = 0.5, i.e,
for transition from the steady state regime with K = Ky = 0,0906 to the regime corresponding to K = K3 =
0.1070 (the other numerical parameters are the same as in 1° of Section 3). The time step At = 0,01; the
coordinate step Ax= 0.01; the scale of the times for which the curves are drawn is AT = 0,41, The time
for establishing the new oxidizer flowrate is AT. The upper curve is the steady-state pressure distribution
for K = Ky, the lower curve is for K = Kj,

After change of the oxidizer flowrate through the channel, a simple rarefaction wave begins to
propagate and is reflected alternately from the left and right boundaries. The wave intensity is low; the
temperature and concentration perturbations are transported with the gas stream,
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Reflection from the boundaries takes place as from a solid wall, i.e., in phase opposition with the
incident wave. As in case 1° of the present section, the rarefaction wave gradually decays and the wave
front diffuses, In this case the wave also decays because of the fact that it is mechanically unstable and
the distribution of the quantities in the wave becomes smoother in the course of time,

The behavior of the gas temperature at the end of the channel is interesting. After the first
reflection of the rarefaction wave from the nozzle, the gas temperature decreases below the steady—state
value corresponding to K = K; and then begins to slowly increase, approaching the final steady-state
distribution with K = Kj,

Since the transient processes are associated with propagation through the channel of shock waves
(or rarefaction waves), it is clear that burnup of the channel also takes place in a wavelike fashion. This
is seen from Fig. 3b which shows the initial (K = K;) and final K = K;3) distributions of the mass burning
velocity m(x) (denoted by letters a and b, respectively) and also the instantaneous distributions of m ) up
to the moment of wave reflection from the channel entrance for several moments of time (time scale same
as in Fig. 3a). The dash-dot curves correspond to waves reflected from the nozzle. We note that for
steady-state burning the maximal burnup of the fuel channel occurs at the entrance to the channel, since
the behavior of the function mfx) is determined by the concentration distribution (the flow changes only
slightly).

In conclusion let us examine Fig. 4, which shows the pressure pj at the exit from the channel as a
function of time, Curve 3 is plotted for case 1° of this section, curve 2 is for case 2° and curve 1 is for
the case k = 1,5 (transition from the steady regime with K = K; to the regime with K = K;), The latter case
is associated with the formation of a compression wave (its intensity is Ap/py = 1/20).

The abscissa scale in Fig, 4 is: point 100 corresponds to the time t = 41 for curves 1 and 2 and to
t = 30,75 for curve 3.

The magnitude of the pressure at the channel exit changes abruptly when the shock wave (or rare-
faction wave) reaches the nozzle. Since the wave decays, the magnitude of these shocks diminishes in the
course of time and at the end of the process there is a smooth transition to the final steady-state value.

In Fig. 4 the lower dashed line is the final steady value for curve 2, the middle line is for curve 3,
the upper line is for curve 1, Extrapolating curves 1, 2, 3 to their intersection with the corresponding
straight lines, we obtain the exact times for transition to the new steady-state regime. For curves 1 and
2 ty = 57.40, for curve 3 t; = 31.36. This result differs considerably from the estimates of the emptying
{or filling) time calculated from the steady-state distributions. The pressure pulsation decay time is
about one third of the time for transition to the new steady regime for curves 1 and 2 and about one half
the transition time for curve 3.

The transient regime computational scheme proposed in the present study is based on the assumption
of the diffusive combustion mechanism for the combustion of the solid propellant, which is satisfied if
there is excess oxidizer in the channel and the Reynolds number, which determines the burning velocity,
is sufficiently small. Characteristic of this case is the fact that the burning velocity does not depend
explicitly on the pressure.

With increase of the Reynolds number, accompanied by intensification of the burning process, there
is more intense mixing of the gas at each section of the channel and a change from the diffusion combustion
regime to the kinetic regime, in which the characteristic chemical reaction time is comparable with the
mixing time. In this case the burning velocity depends on the pressure in accordance with the chemical
reaction kinetics and the combustion regime itself in the channel is quite similar to combustion in a homo~
geneous chemical reactor. It is not impossible that the existence of the explicit dependence of the burning
velocity on the pressure may lead to the onset of thermokinetic oscillations in the channel because of feed-
back between the burning velocity and the gas discharge through the nozzle, which also depends on the
pressure.

Additional effects may arise in examining the restructuring of the thermal layer in the solid matter,
which leads to change with time of the effective heat of combustion of the fuel, Account for the unsteady
nature of the thermal layer in the transient regime is also essential in the case of diffusive combustion,
provided the fuel channel emptying time is comparable with the time for restructing of the thermal layer.
This effect is not considered in the present study in order to simplify the calculations. In order that the
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assumption of quasistationarity of the thermal layer be justified in practice, the volume of the fuel channel
must be sufficiently large — in this case the heated layer will be able to follow the state of the gas flow in
the channel.

Also of interest is the solution of the transient regime problem when the oxidizer supply to the
channel is deficient. In this case the oxidizer burns up completely at some channel length and in the
remainder of the channel there will be ablation of the fuel under the influence of the hot combustion products
rather than combustion.

In conclusion, we note that the system of equations (2,3) can be solved by averaging all the equations
with regard to x, In this case the solution does not account for the gasdynamic picture of the phenomenon,
which has a significant effect on the average characteristics of the transient regime, Specificially, the
values of the time for transition from one steady regime to another obtained using this approach differ
considerably from the actual values obtained by numerical integration of the unsteady system of equations.

The authors wish to thank 1.. A, Chudov for valuable advice.
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